Abstract
Abstract
β-Ga2O3 is an emerging, ultra-wide bandgap (energy gap of 4.85 eV) transparent semiconducting oxide, which attracted recently much scientific and technological attention. Unique properties of that compound combined with its advanced development in growth and characterization place β-Ga2O3 in the frontline of future applications in electronics (Schottky barrier diodes, field-effect transistors), optoelectronics (solar- and visible-blind photodetectors, flame detectors, light emitting diodes), and sensing systems (gas sensors, nuclear radiation detectors). A capability of growing large bulk single crystals directly from the melt and epi-layers by a diversity of epitaxial techniques, as well as explored material properties and underlying physics, define a solid background for a device fabrication, which, indeed, has been boosted in recent years. This required, however, enormous efforts in different areas of science and technology that constitutes a chain linking together engineering, metrology and theory. The present review includes material preparation (bulk crystals, epi-layers, surfaces), an exploration of optical, electrical, thermal and mechanical properties, as well as device design/fabrication with resulted functionality suitable for different fields of applications. The review summarizes all of these aspects of β-Ga2O3 at the research level that spans from the material preparation through characterization to final devices.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
315 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献