Reliable adder and multipliers in QCA technology

Author:

Raja Sekar KORCID,R MarshalORCID,Lakshminarayanan GORCID

Abstract

Abstract Quantum-dot cellular automata (QCA) nanotechnology is an interesting circuit design technology which is based on coulombic repulsion and majority logic (ML). Reliability is a key issue in QCA circuits. In this work, an adder is proposed with better fault tolerance and reduced complexity by combining three-input ML and five-input ML gates. The proposed design is realized by using the clock zone approach. Hence, the proposed design deploys only normal cells for its realization. This makes the proposed design less vulnerable to fabrication faults. This is validated by performing extensive fabrication defect analysis. A novel expression to compute the circuit complexity is also proposed. The proposed adder is used to realize a reliable array and serial multiplier. The proposed multipliers consume almost 55% less energy compared to the existing designs. The proposed adder can be used in any circuit at the basic elements.

Funder

Ministry of Electronics and Information technology

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference36 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum-based serial-parallel multiplier circuit using an efficient nano-scale serial adder;Informacije MIDEM - Journal of Microelectronics, Electronic Components and Materials;2024-04-17

2. Designing Fault-Tolerant Digital Circuits in Quantum-Dot Cellular Automata;Design and Applications of Emerging Computer Systems;2024

3. Designs of Array Multipliers with an Optimized Delay in Quantum-Dot Cellular Automata;Electronics;2023-07-23

4. Reliable Quantum-dot Cellular Automata Coplanar Adder and Subtractor for Multi-bit Designs;2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT);2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3