The effect of temperature on the electrical characteristics of zigzag and armchair black phosphorus based 2D MOSFET

Author:

Majumder TanmoyORCID,Mukherjee Chandrima,Dasgupta SudebORCID,Chakraborty UdayanORCID,Das NarottamORCID,Bhattacharjee AbhishekORCID

Abstract

Abstract A first time comparative study of the thermal dependence of vital electrical characteristics of two-dimensional metal-oxide-semiconductor field-effect transistors based on black phosphorus for both zigzag and armchair orientations is presented in this paper. It is seen that a higher in-plane thermal conductivity in zigzag direction results in a much better on state current performance which comes at the cost of orders of magnitude increase in gate leakage and a reduced on to off state current ratio. The effect of temperature on threshold voltage (V TH), short channel effects like drain induced barrier lowering, subthreshold swing (SS), Schottky barrier height ΦSB and transconductance behavior in both zigzag and armchair orientations is thoroughly discussed and the inherent physical mechanisms resulting the variations are also presented. Though increase in temperature is found to deteriorate the SS and drain conductance but at the same time, it is found to improve the short channel performance of the devices under consideration.

Funder

Institute of Technology, Narsingarh, Tripura, India, School of Electronics Engineering, Vellore Institute

Department of Electronics and Communication Engineering, Tripura

The School of Engineering and Technology, Central Queensland University, Melbourne Campus

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3