Impact of in situ NH3 pre-treatment of LPCVD SiN passivation on GaN HEMT performance

Author:

Chen Ding-YuanORCID,Persson Axel RORCID,Wen Kai-Hsin,Sommer Daniel,Grünenpütt Jan,Blanck Hervé,Thorsell MattiasORCID,Kordina OlofORCID,Darakchieva VanyaORCID,Persson Per O ÅORCID,Chen Jr-TaiORCID,Rorsman NiklasORCID

Abstract

Abstract The impact on the performance of GaN high electron mobility transistors (HEMTs) of in situ ammonia (NH3) pre-treatment prior to the deposition of silicon nitride (SiN) passivation with low-pressure chemical vapor deposition (LPCVD ) is investigated. Three different NH3 pre-treatment durations (0, 3, and 10 min) were compared in terms of interface properties and device performance. A reduction of oxygen (O) at the interface between SiN and epi-structure is detected by scanning transmission electron microscopy (STEM )-electron energy loss spectroscopy (EELS) measurements in the sample subjected to 10 min of pre-treatment. The samples subjected to NH3 pre-treatment show a reduced surface-related current dispersion of 9% (compared to 16% for the untreated sample), which is attributed to the reduction of O at the SiN/epi interface. Furthermore, NH3 pre-treatment for 10 min significantly improves the current dispersion uniformity from 14.5% to 1.9%. The reduced trapping effects result in a high output power of 3.4 W mm−1 at 3 GHz (compared to 2.6 W mm−1 for the untreated sample). These results demonstrate that the in situ NH3 pre-treatment before LPCVD of SiN passivation is critical and can effectively improves the large-signal microwave performance of GaN HEMTs.

Funder

European Union’s Horizon 2020

Swedish Foundation for Strategic Research

Swedish Research Council VR

VINNOVA

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3