A review of three-dimensional structure-controlled InGaN quantum wells for efficient visible polychromatic light emitters

Author:

Funato MitsuruORCID,Matsuda YoshinobuORCID,Kawakami YoichiORCID

Abstract

Abstract This paper reviews the development of three-dimensional (3D) structure-controlled InGaN quantum wells (QWs) for highly efficient multiwavelength emitters without using phosphors. Specifically, two representative structures are reviewed: 3D structures composed of stable planes with low surface energies and 3D structures composed of unstable planes. In the early stage of the research, 3D structures were grown on the (0001) polar plane through the selective area growth (SAG) technique based on metalorganic vapor phase epitaxy. Because GaN cannot grow on dielectric masks, different mask patterns were used to create various 3D facetted structures composed of stable facet planes. The InGaN QW parameters depend on the facet planes, which led to polychromatic emission, including white-light emission. After polychromatic light-emitting diodes (LEDs) on the (0001) polar plane were demonstrated, 3D QWs and LEDs were also demonstrated on the ( 1 ˉ 1 ˉ 2 2 ˉ ) semipolar plane through SAG. There, the (0001) facet plane was excluded; consequently, all the facet QWs showed short radiative recombination lifetimes, which are beneficial for future applications in visible-light communication. To further enhance the controllability of the emission spectra from 3D QWs or LEDs, convex-lens-shaped 3D structures have been proposed. The smooth surface of such structures is composed of unstable planes and has continuously varying crystal tilts. Because QW parameters are dependent on the crystal tilt, polychromatic emission is achieved. This method demonstrates greater flexibility of the structure design, which is expected to result in greater controllability of emission spectra.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3