Abstract
Abstract
In this paper, we investigate the charge trapping in power AlGaN/GaN high electron mobility transistors which occurs in ON-state operation (V
DS = 40 V, V
GS = 0 V, I
DS = 0.18 A mm−1). By analysing the dynamic ON-resistance (R
ON) after OFF-state and ON-state stress in devices with different SiN
x
passivation stoichiometries, we find that this charge trapping can be largely suppressed by a high Si concentration passivation. Both potential probe and electroluminescence (EL) measurements further confirm that the stress can induce negative charge trapping in the gate–drain access region. It is shown that EL is generated as expected under the field plates at the gate edge, but is obscured by the field plates and is actually emitted from the device near the drain edge; hence care is required when using EL alone as a guide to the location of the high field region in the device. From temperature-dependent dynamic R
ON transient measurements, we determine that the apparent activation energy of the measured ‘trap’ response is around 0.48 eV, and infer that they are located in the heavily carbon-doped GaN layer. Using the leaky dielectric model, we explain the response in terms of the hopping transport from the same substitutional carbon acceptor buffer dopants.
Funder
UK National Productivity Investment Fund
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献