Abstract
Abstract
The semiconductor/dielectric interface is arguably the most important region in field-effect transistors. This article investigates the performance-enhancing effects of passivation of the dielectric surface by a self-assembled layer (SAM) of silanes on organic field-effect transistors. Apart from conventional figures of merit for the devices, the energetic distribution of the density of the in-gap trap-states (trap-DOS) and the contact resistance are evaluated using numerical methods. The investigation reveals that the surface passivation of the dielectric SiO2 has a dual effect on device operation. Firstly, it establishes quantitatively that the surface passivation leads to a significant reduction in the density of both shallow and deep traps in the organic semiconductor PBTTT-C14. This effect outweighs the impact of the SAM dipoles on the device turn-on. Secondly, the contact resistance gets lowered by a factor of more than 10 due to the improved top-surface morphology of the PBTTT-C14 thin film. The lower contact resistance in devices is corroborated by lower contact potential difference between PBTTT-C14 and gold, measured using scanning kelvin probe microscopy.
Funder
Indian Council of Agricultural Research
Department of Science and Technology, Ministry of Science and Technology, India
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献