High optoelectronic quality of AZO films grown by RF-magnetron sputtering for organic electronics applications

Author:

Silva Hálice de Oliveira XavierORCID,Faraco Thales AlvesORCID,Maciel Indhira OliveiraORCID,Quirino Welber GianiniORCID,Fragneaud BenjaminORCID,Pereira Paula GomesORCID,Legnani CristianoORCID

Abstract

Abstract Aluminum-doped zinc oxide thin films, known by the acronym AZO, were grown by radio-frequency magnetron sputtering method (rf-magnetron sputtering) onto glass substrate at room temperature and without posterior heat treatment. The impact on the structural, electrical, and optical properties of the AZO films was studied as a function of the following deposition parameters: working pressure, rf-power and thickness. Our films showed low electrical resistivity and high transmittance in the visible region comparable to commercial indium tin oxide (ITO) films. We obtained an optimized AZO film with an electrical resistivity of 4.90 × 10−4 Ωcm and presented optical transmittance strikingly high for such a good conductor, with about 98% at 580 nm and an average optical transmittance of about 92% in the visible region. We also built and characterized an organic light-emitting diode (OLED) using the optimized AZO film as a transparent electrode. The AZO-based OLED showed characteristics comparable to a reference ITO-based device, indicating that AZO films have optoelectronic properties good enough to be used in organic electronics. In addition, the results suggest that they are suitable to be employed as transparent conductors in flexible polymeric substrates since their synthesis was performed without intentional heating.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Financiadora de Estudos e Projetos

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3