Highly Transparent Red Organic Light-Emitting Diodes with AZO/Ag/AZO Multilayer Electrode

Author:

Lee Dongwoon1ORCID,Song Min Seok1,Seo Yong Hyeok1,Lee Won Woo1,Kim Young Woo1ORCID,Park Minseong2,Shin Ye Ji2,Kwon Sang Jik1ORCID,Jeon Yongmin2ORCID,Cho Eou-Sik1ORCID

Affiliation:

1. Department of Electronics Engineering, Gachon University, Seongnam 13120, Republic of Korea

2. Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea

Abstract

Free-form factor optoelectronics is becoming more important for various applications. Specifically, flexible and transparent optoelectronics offers the potential to be adopted in wearable devices in displays, solar cells, or biomedical applications. However, current transparent electrodes are limited in conductivity and flexibility. This study aims to address these challenges and explore potential solutions. For the next-generation transparent conductive electrode, Al-doped zinc oxide (AZO) and silver (AZO/Ag/AZO) deposited by in-line magnetron sputtering without thermal treatment was investigated, and this transparent electrode was used as a transparent organic light-emitting diode (OLED) anode to maximize the transparency characteristics. The experiment and simulation involved adjusting the thickness of Ag and AZO and OLED structure to enhance the transmittance and device performance. The AZO/Ag/AZO with Ag of 12 nm and AZO of 32 nm thickness achieved the results of the highest figure of merit (FOM) (Φ550 = 4.65 mΩ−1) and lowest roughness. The full structure of transparent OLED (TrOLED) with AZO/Ag/AZO anode and Mg:Ag cathode reached 64.84% transmittance at 550 nm, and 300 cd/m2 at about 4 V. The results demonstrate the feasibility of adopting flexible substrates, such as PET, without the need for thermal treatment. This research provides valuable insights into the development of transparent and flexible electronic devices.

Funder

Korea Health Industry Development Institute

National Research Foundation of Korea

Gachon University Research Fund

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3