Effect of gas pre-decomposition device on the growth of GaN epitaxial layer

Author:

Li YazhouORCID,Yao WeizhenORCID,Ma ZhanhongORCID,Yang Shaoyan,Liu Xianglin,Li Chengming,Wang Zhanguo

Abstract

Abstract In previous studies, the influence of gas phase and surface reactions on the growth of GaN was mainly calculated through simulations. In this study, a novel gas pre-decomposition device (GPDD) was designed to experimentally investigate the effects of gas phase and surface reactions on GaN growth by changing the length and height of the isolation plates (IPs). By varying the structure of the GPDD, the effects on the growth rate and thickness uniformity of the GaN films were studied. The growth rate of the GaN sample slowed with the extension of the IPs because the longer partition plates led to insufficient gas mixing and premature consumption of the precursor trimethylgallium (TMG). The use of GPDD simultaneously achieves high crystal quality and smooth surface morphology of the GaN film. Owing to the use of GPDD, the decomposition of TMG in the pyrolysis pathway was promoted, which suppressed Ga vacancies and C impurities, resulting in weak yellow luminescence bands in the photoluminescence. This study provides a comprehensive understanding of the chemical reaction mechanism of GaN and plays an important role in promoting the development of metal-organic chemical vapor deposition equipment.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3