Large-scale Network Survivability Mathematical Association Model under Set Pair Analysis Theory

Author:

Li Jiayi,Zhu Xiaoqing

Abstract

Abstract With the expansion of the application field of robots, the use of eight-legged bionic robots to assist or replace human operations in various complex and extreme terrains is constantly being explored. This paper uses octopus as a bionic object, designs an eight-eccentric wheel walking platform, and studies its dynamics, kinematics and trajectory planning. This paper first investigates the development history and research status of multi-legged robots in many countries, analyzes the shortcomings of octa-legged robots, and proposes improved solutions on this basis. Through the bionic of the octopus structure, the Catia software is used to design and establish a three-dimensional model of the octopus-like eight-eccentric wheel robot. By importing the three-dimensional model into the dynamic analysis software Adams for simulation, after adding constraints, driving, torque and contact force, the various functions of the platform are simulated to obtain linear wheel walking, rotary motion, linear leg walking, the parameters of jumping motion and obstacle-crossing motion are drawn into tables for intuitive analysis, and virtual prototype simulation is used to verify the correctness of the established model and trajectory planning. The research in this paper lays a theoretical foundation for the development and application of this eight-eccentric wheel bionic robot.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts;Kimura;The International Journal of Robotics Research,2007

2. Research status and key technologies of ground mobile robot system;Wang;Mechanical design,2006

3. Prototype development and gait planning of biologically inspired multi-legged crablike robot;Xi;Mechatronics,2013

4. Research on Motion and Force Planning of Multi-legged Walking Robot;Wang,2005

5. The significance and development of bionics;Lu;Science China.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3