M-YOLO: A Nighttime Vehicle Detection Method Combining Mobilenet v2 and YOLO v3

Author:

Huang Shan,He Ye,Chen Xiao-an

Abstract

Abstract Vehicle detection at nighttime plays a vital role in reducing the incidence of night traffic accidents. In order to further improve the accuracy of nighttime vehicle detection, and to be suitable for constrained environments (such as: embedded devices in vehicles), this study proposes a deep neural network model called M-YOLO. First, M-YOLO’s feature extraction backbone network used the lightweight network MobileNet v2. Second, the K-means algorithm is reused to cluster the dataset to obtain the anchor boxes which are suitable for this paper. Third, M-YOLO uses the EIoU loss function to continuously optimize the model. The experiments showed that the average precision (AP) of proposed M-YOLO can reach to 94.96%. And ten frames per second (FPS) were processed in a constrained environment. Compared with YOLO v3, the proposed model performs better in detection accuracy and real-time performance.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Vision-based two-step brake detection method for vehicle collision avoidance;Wang;Neurocomputing,2016

2. An Intelligent IoT-based Vision System for Nighttime Vehicle Detection and Energy Saving;Hsia;Sensors and materials,2019

3. Improving Night Time Driving Safety Using Vision-Based Classification Techniques;Jong;Sensors,2017

4. A Comparative Study of State-of-the-Art Deep Learning Algorithms for Vehicle Detection;Wang;IEEE Intelligent Transportation Systems Magazine,2019

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3