Transforming Urban Sanitation: Enhancing Sustainability through Machine Learning-Driven Waste Processing

Author:

Gude Dhanvanth Kumar1,Bandari Harshavardan1,Challa Anjani Kumar Reddy1,Tasneem Sabiha2,Tasneem Zarin2,Bhattacharjee Shyama Barna3,Lalit Mohit1,Flores Miguel Angel López456ORCID,Goyal Nitin7ORCID

Affiliation:

1. Apex Institute of Technology (AIT-CSE), Chandigarh University, Mohali 140413, Panjab, India

2. Department of Allied Sciences, Faculty of Science, Engineering and Technology (FSET), University of Science and Technology Chittagong (USTC), Chattogram 4220, Bangladesh

3. Department of Computer Science and Engineering, Faculty of Science, Engineering and Technology (FSET), University of Science and Technology Chittagong (USTC), Chattogram 4220, Bangladesh

4. Engineering Research & Innovation Group, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain

5. Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico

6. Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas (UPIICSA), Ciudad de México 04510, Mexico

7. Department of Computer Science and Engineering, School of Engineering and Technology, Central University of Haryana, Mahendergarh 123031, Haryana, India

Abstract

The enormous increase in the volume of waste caused by the population boom in cities is placing a considerable burden on waste processing in cities. The inefficiency and high costs of conventional approaches exacerbate the risks to the environment and human health. This article proposes a thorough approach that combines deep learning models, IoT technologies, and easily accessible resources to overcome these challenges. Our main goal is to advance a framework for intelligent waste processing that utilizes Internet of Things sensors and deep learning algorithms. The proposed framework is based on Raspberry Pi 4 with a camera module and TensorFlow Lite version 2.13. and enables the classification and categorization of trash in real time. When trash objects are identified, a servo motor mounted on a plastic plate ensures that the trash is sorted into appropriate compartments based on the model’s classification. This strategy aims to reduce overall health risks in urban areas by improving waste sorting techniques, monitoring the condition of garbage cans, and promoting sanitation through efficient waste separation. By streamlining waste handling processes and enabling the creation of recyclable materials, this framework contributes to a more sustainable waste management system.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3