Influence of ITO Target on Structural, Optical, and Electrical Properties of Thin Films Deposited by Magnetron Sputtering

Author:

Yang Shumin,Zhang Wei,Xie Bin,Xiong Mingyao

Abstract

Abstract Indium tin oxide (ITO) targets possess good performances, thereby used to produce high-quality ITO films in transparent electrodes of various optoelectronic devices. The performance of the target greatly affects the performances of prepared ITO films. However, effect of the overall performance of ITO targets on ITO films performance is still not fully understood. ITO films were prepared with four targets by magnetron sputtering in the similar condition in this study. Effects of crystal structure, resistivity, and oxygen content of the targets on photoelectric performances of ITO films were all evaluated. Results showed the important effect of target properties on obtained film characteristics. ITO films prepared by low resistivity targets are more evenly distributed on the substrate surface. Meanwhile, oxygen content of obtained ITO films decreased as oxygen content of ITO targets used in sputtering process increased. This also significantly improved the photoelectric performances. ITO thin films deposited using targets with low resistivity and low oxygen content exhibited excellent photoelectric performances. In this experiment, the prepared ITO film illustrated the lowest resistivity of 1.75×10−4 Ω·cm and average transmittance of 90.5%. In sum, these findings provided a certain experimental basis for further improving the performances of ITO films.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preparation of Transparent Conductive Thin-Film Coatings by Spray-Pyrolysis;2024 IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3