The Open Data Detector Tracking System

Author:

Gessinger-Befurt Paul,Salzburger Andreas,Niermann Joana

Abstract

Abstract Charged particle reconstruction in High Energy Physics experiments is a significant part of overall event reconstruction. Depending on the physics environment, for instance in collider experiments with high multiplicities or luminosities, the tracking problem increases in complexity and often poses not only an algorithmic, but also a computational challenge. With the high-luminosity phase of the LHC at CERN approaching, research for new approaches and algorithms for track reconstruction has seen an increased interest. Both new technological approaches like hardware accelerators, as well as machine learning are being developed. However, testing and developing these new approaches against the existing experiments’ software stacks can prove to be challenging, as they typically focus on stable data taking, discouraging disruptive changes. This document presents a virtual tracking detector that is designed to be a simplified, but realistic model of a real-world detector, that can serve as a robust testbed for new developments.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep generative models for detector signature simulation: A taxonomic review;Reviews in Physics;2024-12

2. The derivation of Jacobian matrices for the propagation of track parameter uncertainties in the presence of magnetic fields and detector material;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-11

3. Key4hep: Progress Report on Integrations;EPJ Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3