The TrackML high-energy physics tracking challenge on Kaggle

Author:

Kiehn Moritz,Amrouche Sabrina,Calafiura Paolo,Estrade Victor,Farrell Steven,Germain Cécile,Gligorov Vava,Golling Tobias,Gray Heather,Guyon Isabelle,Hushchyn Mikhail,Innocente Vincenzo,Moyse Edward,Rousseau David,Salzburger Andreas,Ustyuzhanin Andrey,Vlimant Jean-Roch,Yilnaz Yetkin

Abstract

The High-Luminosity LHC (HL-LHC) is expected to reach unprecedented collision intensities, which in turn will greatly increase the complexity of tracking within the event reconstruction. To reach out to computer science specialists, a tracking machine learning challenge (TrackML) was set up on Kaggle by a team of ATLAS, CMS, and LHCb physicists tracking experts and computer scientists building on the experience of the successful Higgs Machine Learning challenge in 2014. A training dataset based on a simulation of a generic HL-LHC experiment tracker has been created, listing for each event the measured 3D points, and the list of 3D points associated to a true track.The participants to the challenge should find the tracks in the test dataset, which means building the list of 3D points belonging to each track.The emphasis is to expose innovative approaches, rather than hyper-optimising known approaches. A metric reflecting the accuracy of a model at finding the proper associations that matter most to physics analysis will allow to select good candidates to augment or replace existing algorithms.

Publisher

EDP Sciences

Reference15 articles.

1. Application of Kalman filtering to track and vertex fitting

2. Simultaneous pattern recognition and track fitting by the Kalman filtering method

3. Rousseau D., Amrouche S., Calafiura P., Estrade V., Farrell S., Ger-main C., Gligorov V., Golling T., Gray H., Guyon I. et al., TrackML Challenge, https://sites.google.com/site/trackmlparticle/home (2018)

4. Rousseau D., Amrouche S., Calafiura P., Estrade V., Farrell S., Germain C., Gligorov V., Golling T., Gray H., Guyon I. et al., Accuracy phase of the TrackML Challenge on Kaggle (2018)

5. Rousseau D., Amrouche S., Calafiura P., Estrade V., Farrell S., Germain C., Gligorov V., Golling T., Gray H., Guyon I. et al., Throughput phase of the TrackML Challenge on Codalab, https://competitions.codalab.org/competitions/20112 (2018)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Track reconstruction for the ATLAS Phase-II Event Filter using GNNs on FPGAs;EPJ Web of Conferences;2024

2. Unveiling Trajectories: Breakthroughs in Muon Tracking for CONNIE Experiment;2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON);2023-12-05

3. The Open Data Detector Tracking System;Journal of Physics: Conference Series;2023-02-01

4. Detray: a compile time polymorphic tracking geometry description;Journal of Physics: Conference Series;2023-02-01

5. Accelerating the Inference of the Exa.TrkX Pipeline;Journal of Physics: Conference Series;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3