Demonstration of FPGA Acceleration of Monte Carlo Simulation

Author:

Barbone M.,Howard A.,Tapper A.,Chen D.,Novak M.,Luk W.

Abstract

Abstract We present results from a stand-alone simulation of electron single Coulomb scattering as implemented completely on an Field Programmable Gate Array (FPGA) architecture and compared with an identical simulation on a standard CPU. FPGA architectures offer unprecedented speed-up capability for Monte Carlo simulations, however with the caveats of lengthy development cycles and resource limitation, particularly in terms of on-chip memory and DSP blocks. As a proof of principle of acceleration on an FPGA, we chose a single scattering process of electrons in water at an energy of 6 MeV. The initial code-base was implemented in C++ and optimised for CPU processing. To measure the potential performance gains of FPGAs compared to modern multi-core CPUs we computed 100M histories of a 6 MeV electron interacting in water. Without performing any hardware-specific optimisation, the results show that the FPGA implementation is over 110 times faster than an optimised parallel implementation running on 12 CPU-cores, and over 270 times faster than a sequential single-core CPU implementation. The results on both architectures were statistically equivalent. The successful implementation and acceleration results are very encouraging for the future exploitation of more sophisticated Monte Carlo simulation on FPGAs for High Energy Physics applications.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3