Fast, high-quality pseudo random number generators for heterogeneous computing

Author:

Barbone Marco,Gaydadjiev Georgi,Howard Alexander,Luk Wayne,Savvidy George,Savvidy Konstantin,Rose Andrew,Tapper Alexander

Abstract

Random number generation is key to many applications in a wide variety of disciplines. Depending on the application, the quality of the random numbers from a particular generator can directly impact both computational performance and critically the outcome of the calculation. High-energy physics applications use Monte Carlo simulations and machine learning widely, which both require high-quality random numbers. In recent years, to meet increasing performance requirements, many high-energy physics workloads leverage GPU acceleration. While on a CPU, there exist a wide variety of generators with different performance and quality characteristics, the same cannot be stated for GPU and FPGA accelerators. On GPUs, the most common implementation is provided by cuRAND - an NVIDIA library that is not open source or peer reviewed by the scientific community. The highest-quality generator implemented in cuRAND is a version of the Mersenne Twister. Given the availability of better and faster random number generators, high-energy physics moved away from Mersenne Twister several years ago and nowadays MIXMAX is the standard generator in Geant4 via CLHEP. The MIXMAX original design supports parallel streams with a seeding algorithm that makes it especially suited for GPU and FPGA where extreme parallelism is a key factor. In this study we implement the MIXMAX generator on both architectures and analyze its suitability and applicability for accelerator implementations. We evaluated the results against “Mersenne Twister for a Graphic Processor” (MTGP32) on GPUs which resulted in 5, 13 and 14 times higher throughput when a 240, 17 and 8 sized vector space was used respectively. The MIXMAX generator coded in VHDL and implemented on Xilinx Ultrascale+ FPGAs, requires 50% fewer total Look Up Tables (LUTs) compared to a 32-bit Mersenne Twister (MT-19337), or 75% fewer LUTs per output bit. In summary, the state-of-the art MIXMAX pseudo random number generator has been implemented on GPU and FPGA platforms and the performance benchmarked.

Publisher

EDP Sciences

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3