Author:
Khan S,Acharyya A,Biswas A,Sarkar B,Inokawa H,Dhar R S
Abstract
Abstract
Two-dimensional large-signal and noise simulations are used to study the terahertz (THz) performance of Gallium Nitride (GaN) avalanche transit time source (ATT) source. A comprehensive model of parasitic series resistance has been developed by which the effect of series resistance on the large-signal and noise performance of the 1.0 THz GaN ATT source has been investigated; the proposed model is based on time varying depletion width modulation under large-signal oscillating condition. Significant amount of deterioration in power output and efficiency have been observed due to the existence of series resistance of the device. On the other hand, the realization of the optimized structure and doping profile as per the theoretical design is a tricky job by considering the state-of-the-art GaN fabrication technology. Especially, achieving the absolute values of epitaxial doping densities is almost an unrealistic task. Therefore, it is very important to acquire the knowledge about how much extent the power output, series resistance and noise measure of the source are affected due to the change in doping level of both n- and p-layers. In the present study, the sensitivities of the above-mentioned parameters with respect to the change in the doping densities of n- and p-layers have been investigated.
Subject
General Physics and Astronomy