Study of Flame Detection based on Improved YOLOv4

Author:

Cao Chengzhi,Tan Xiaoyu,Huang Xinyi,Zhang Yongjun,Luo Zehao

Abstract

Abstract In some complex circumstances, the detection of conflagration mostly depends on smog detectors, which have lots of limitations in precision, efficiency and safety. If we make full use of object detection algorithms to detect the flame in industries, it will benefit people’s safety obviously. Among all kinds of object detection algorithms, YOLO series play a very significant role. In this paper, we propose an improving strategy on YOLOv4 to enhance its precision based on multi-scale feature maps. Firstly, we create flame datasets including almost 4000 high-resolution flame pictures. Secondly, some improvements on feature extraction network are made to detect smaller objects. Finally, the total algorithm are trained and tested on our datasets for about 400 epochs. The result show that the method can generate high quality on flame detection in a great number of situations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early fire danger monitoring system in smart cities using optimization-based deep learning techniques with artificial intelligence;Journal of Reliable Intelligent Environments;2024-03-29

2. Flame smoke detection algorithm based on YOLOv5 in petrochemical plant;International Journal of Intelligent Computing and Cybernetics;2023-01-17

3. YOLO-F: YOLO for Flame Detection;International Journal of Pattern Recognition and Artificial Intelligence;2023-01

4. Detection of Pine Wilt Nematode from Drone Images Using UAV;Sensors;2022-06-22

5. Fire Detection Method in Smart City Environments Using a Deep-Learning-Based Approach;Electronics;2021-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3