Detection of Pine Wilt Nematode from Drone Images Using UAV

Author:

Sun Zhengzhi,Ibrayim Mayire,Hamdulla AskarORCID

Abstract

Pine wilt nematode disease is a devastating forest disease that spreads rapidly. Using drone remote sensing to monitor pine wilt nematode trees promptly is an effective way to control the spread of pine wilt nematode disease. In this study, the YOLOv4 algorithm was used to automatically identify abnormally discolored wilt from pine wilt nematode disease on UAV remote sensing images. Because the network structure of YOLOv4 is too complex, although the detection accuracy is high, the detection speed is relatively low. To solve this problem, the lightweight deep learning network MobileNetv2 is used to optimize the backbone feature extraction network. Furthermore, the YOLOv4 algorithm was improved by improving the backbone network part, adding CBAM attention, and adding the Inceptionv2 structure to reduce the number of model parameters and improve the accuracy and efficiency of identification. The speed and accuracy of the Faster R-CNN, YOLOv4, SSD, YOLOv5, and the improved MobileNetv2-YOLOv4 algorithm were compared, and the detection effects of the Faster R-CNN, YOLOv4, SSD, YOLOv5 and the improved MobileNetv2-YOLOv4 algorithm on trees with pine wilt nematode were analyzed. The experimental results show that the average precision of the improved MobileNetv2-YOLOv4 algorithm is 86.85%, the training time of each iteration cycle is 156 s, the parameter size is 39.23 MB, and the test time of a single image is 15 ms, which is better than Faster R-CNN, YOLOv4, and SSD, but comparable to YOLOv5. Compared with the advantages and disadvantages, comprehensively comparing these four indicators, the improved algorithm has a more balanced performance in the detection speed, the parameter size, and the average precision. The F1 score of the improved algorithm (95.60%) was higher than that of Faster R-CNN (90.80%), YOLOv4 (94.56%), and SSD (92.14%), which met the monitoring requirements of pine wilt nematode trees. Faster R-CNN and SSD pine-wilt-nematode tree detection models are not ideal in practical applications. Compared with the YOLOv4 pine-wilt-nematode tree detection model, the improved MobileNetv2-YOLOv4 algorithm satisfies the condition of maintaining a lower model parameter quantity to obtain higher detection accuracy; therefore, it is more suitable for practical application scenarios of embedded devices. It can be used for the rapid detection of pine wilt nematode diseased trees.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3