Author:
Smirnov K V,Yu Chukhlanov V,Smirnova N N
Abstract
Abstract
In this work, the creation of heat-insulating materials that are still operable at temperatures up to + 400 °C and have increased physical and mechanical characteristics was studied. This aim was achieved by using a heat-resistant polymer binder phenylon (an aromatic polyamide) and hollow ceramic microspheres, that were used as a filler. Phenylon was produced by OJSC «Polimersintez» in Vladimir. Hollow ceramic microspheres are the floating fractions of flue emissions from solid-fuel thermal power plants. Thermal insulation materials were made by mixing hollow ceramic microspheres with a phenylon solution in dimethylacetamide to the state of «wet sand». Then, the obtained substance was molded the solvent residues were removed. Furthermore, the main properties of the obtained materials were also studied. It was established that the thermal insulation material is characterized by high strength characteristics, has significant resistance to impact loads and is operable at temperatures up to 400 °C The developed thermal insulation materials are intended to be used in the construction of objects operating under the conditions of cyclic exposure to high temperatures (for example, power plants) and in the construction of objects operating under the conditions of cyclic exposure to high temperatures (for example, power facilities).
Subject
General Physics and Astronomy