Improved IMM algorithm based on XGBoost

Author:

Li Da,Zhang Pei,Li Ruifang

Abstract

Abstract Based on Markov hypothesis, IMM uses multiple motion models to match the moving states of the target, and assumes the transfer probability of each model according to the prior knowledge, which has strong adaptability to tracking maneuvering target. However, it is not direct enough to obtain prior knowledge from source data statistics and then make decision according to maximum likelihood, and the information of source data is not fully utilized. Therefore, we use XGBoost in machine learning algorithm to replace this process. We propose XGBoost-IMM model algorithm. XGBoost can fully learn the information of the source data and make decision on the target motion model, and then IMM can perform multi-filter filtering based on the decision. Experimental results show that our algorithm has good performance.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Iterative Unbiased Conversion Measurement Kalman Filter with Interactive Multi-model Algorithm for Target Tracking [C];Li,2018

2. Nonlinear-Filtering with Interacting Multiple-Model Algorithm for Coastal Radar Target Tracking System [J];Sustika;Applied Mechanics & Materials,2015

3. Target tracking and classification for missile using interacting multiple model (IMM) [C];Yoo,2018

4. XGBoost: A Scalable Tree Boosting System [J];Chen,2016

5. MoleculeNet: A Benchmark for Molecular Machine Learning [J];Wu;Chemical Science,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3