A Sparsified Densely Connected Network with Separable Convolution for Finger-Vein Recognition

Author:

Yao Qiong,Xu XiangORCID,Li Wensheng

Abstract

At present, ResNet and DenseNet have achieved significant performance gains in the field of finger-vein biometric recognition, which is partially attributed to the dominant design of cross-layer skip connection. In this manner, features from multiple layers can be effectively aggregated to provide sufficient discriminant representation. Nevertheless, an over-dense connection pattern may induce channel expansion of feature maps and excessive memory consumption. To address these issues, we proposed a low memory overhead and fairly lightweight network architecture for finger-vein recognition. The core components of the proposed network are a sequence of sparsified densely connected blocks with symmetric structure. In each block, a novel connection cropping strategy is adopted to balance the channel ratio of input/output feature maps. Beyond this, to facilitate smaller model volume and faster convergence, we substitute the standard convolutional kernels with separable convolutional kernels and introduce a robust loss metric that is defined on the geodesic distance of angular space. Our proposed sparsified densely connected network with separable convolution (hereinafter dubbed ‘SC-SDCN’) has been tested on two benchmark finger-vein datasets, including the Multimedia Lab of Chonbuk National University (MMCBNU)and Finger Vein of Universiti Sains Malaysia (FV-USM), and the advantages of our SC-SDCN can be evident from the experimental results. Specifically, an equal error rate (EER) of 0.01% and an accuracy of 99.98% are obtained on the MMCBNU dataset, and an EER of 0.45% and an accuracy of 99.74% are obtained on the FV-USM dataset.

Funder

National Natural Science Foundation of China

Science and Technology Foundation of Guangdong Province

Education and Research Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Finger Vein Verification Framework Based on Siamese Network and Gabor Residual Block;Mathematics;2023-07-20

2. Attention-based Deep Learning Model Using Adaptive Margin Loss For Finger-Vein Recognition;2023 IEEE 3rd International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB);2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3