Author:
Chronis Christos,Anagnostopoulos Georgios,Politi Elena,Garyfallou Antonios,Varlamis Iraklis,Dimitrakopoulos George
Abstract
Abstract
Autonomous BVLOS Unmanned Aerial Vehicles (UAVs) are gradually gaining their share in the drone market. Together with the demand for extended levels of autonomy comes the necessity for high-performance obstacle avoidance and navigation algorithms that will allow autonomous drones to operate with minimum or no human intervention. Traditional AI algorithms have been extensively used in the literature for finding the shortest path in 2-D or 3-D environments and navigating the drones successfully through a known and stable environment. However, the situation can become much more complicated when the environment is changing or not known in advance. In this work, we explore the use of advanced artificial intelligence techniques, such as reinforcement learning, to successfully navigate a drone within unspecified environments. We compare our approach against traditional AI algoriths in a set of validation experiments on a simulation environment, and the results show that using only a couple of low-cost distance sensors it is possible to successfully navigate the drone beyond the obstacles.
Subject
Computer Science Applications,History,Education
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献