Path planning of autonomous UAVs using reinforcement learning

Author:

Chronis Christos,Anagnostopoulos Georgios,Politi Elena,Garyfallou Antonios,Varlamis Iraklis,Dimitrakopoulos George

Abstract

Abstract Autonomous BVLOS Unmanned Aerial Vehicles (UAVs) are gradually gaining their share in the drone market. Together with the demand for extended levels of autonomy comes the necessity for high-performance obstacle avoidance and navigation algorithms that will allow autonomous drones to operate with minimum or no human intervention. Traditional AI algorithms have been extensively used in the literature for finding the shortest path in 2-D or 3-D environments and navigating the drones successfully through a known and stable environment. However, the situation can become much more complicated when the environment is changing or not known in advance. In this work, we explore the use of advanced artificial intelligence techniques, such as reinforcement learning, to successfully navigate a drone within unspecified environments. We compare our approach against traditional AI algoriths in a set of validation experiments on a simulation environment, and the results show that using only a couple of low-cost distance sensors it is possible to successfully navigate the drone beyond the obstacles.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference16 articles.

1. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges;Aggarwal;Computer Communications,2020

2. Drone deep reinforcement learning: A review;Azar;Electronics,2021

3. Sampling-based methods for factored task and motion planning;Garrett;The International Journal of Robotics Research,2018

4. Reinforcement learning for uav attitude control;Koch;ACM Transactions on Cyber-Physical Systems,2019

5. Motor anomaly detection for unmanned aerial vehicles using reinforcement learning;Lu;IEEE internet of things journal,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3