The influence of confined acoustic phonon on the Quantum Ettingshausen effect in cylindrical quantum wire with an infinite potential in presence of strong electromagnetic wave

Author:

Ngoc Hoang Van,Anh Nguyen Thi Nguyet,Dien Tang Thi,Bau Nguyen Quang,Nhan Nguyen Vu

Abstract

Abstract Based on the quantum kinetic equation method, the quantum Ettingshausen effect has been theoretically studied under the influence of confined acoustic phonon in a cylindrical quantum wire (CQW) with infinite potential in the presence of a strong electromagnetic wave. We considered a quantum wire in the presence of a constant electric field, a magnetic field, an electromagnetic wave (EMW) with an assumption that electron – confined acoustic phonon (CAP) scattering is essential. Analytical results obtained show that the EC depends on the amplitude and the frequency of the EMW in a non-linear way. Besides, the impact of phonon confinement on the above effect characterized by m-quantum number in the expression of the EC. The theoretical results have been numerically calculated for the GaAS/AlGaAs cylindrical quantum wire model. The obtained results show that the phonon confinement contributes to the EC quantitatively and qualitatively. On the other hand m is set to zero, the result obtained is similar to the case of unconfined phonon. Furthermore, by considering the quantum size effect, the values of the EC increases, the position of the magnetic-phonon resonance peak changes, and the number of peak resonant peak increases while the radius of quantum wire declines. These obtained results are different from bulk semiconductor and unconfined phonon case which donates to the theory of the Ettingshausen effect in low-dimensional semiconductor systems.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3