Author:
Martin M,Pfaffel S,te Heesen H,Rohrig K
Abstract
Abstract
Since operational managers often monitor large numbers of wind turbines (WTs), they depend on a toolset to provide them with highly condensed information to identify and prioritize low performing WTs or schedule preventive maintenance measures. Power curves are a frequently used tool to assess the performance of WTs. The power curve health value (HV) used in this work is supposed to detect power curve anomalies since small deviations in the power curve are not easy to identify. It evaluates deviations in the linear region of power curves by performing a principal component analysis. To calculate the HV, the standard deviation in direction of the second principal component of a reference data set is compared to the standard deviation of a combined data set consisting of the reference data and data of the evaluated period. This article examines the applicability of this HV for different purposes as well as its sensitivities and provides a modified HV approach to make it more robust and suitable for heterogeneous data sets. The modified HV was tested based on ENGIE’s open data wind farm and data of on- and offshore WTs from the WInD-Pool. It proved to detect anomalies in the linear region of the power curve in a reliable and sensitive manner and was also eligible to detect long term power curve degradation. Also, about 7 % of all corrective maintenance measures were preceded by high HVs with a median alarm horizon of three days. Overall, the HV proved to be a promising tool for various applications.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献