The Realization and Optimization Technology of Recognition Algorithm Based on Tensorflow Deep Learning Mechanism

Author:

Xu Wencai

Abstract

Abstract With the rapid development of today’s technological society, recognition algorithms have received more and more attention. In addition, in recent years, deep learning algorithms have developed rapidly at the theoretical level, and related new technologies have also been applied to various industries. TensorFlow is a deep learning framework that performs well in all aspects. The purpose of this article is to study the realization of recognition algorithms based on TensorFlow’s deep learning mechanism and their optimization techniques. The target detection algorithm used in the system in this paper combines deep learning technology to replace the traditional method based on convolutional filtering. The paper is based on the TensorFlow deep learning framework. TensorFlow is an open source software library for machine intelligence. The learning software library of the network learning framework. This article uses a semi-automatic labeling method combined with an incremental learning algorithm to label the data set. After labeling the data, the parameters are set, the model is trained, and the model is finally trained and applied to the detection system. Studies have shown that: in the recognition algorithm, only the single sub-analysis stream is considered, and the short video sequence analysis stream can get the most excellent accuracy. Compared with the second best long video sequence analysis stream, it can also increase by about 3%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Robust Filtering-Based Thinning Algorithm for Pattern Recognition;Cai;Computer Journal

2. Face Recognition Using Sparse Fingerprint Classification Algorithm;Larrain;IEEE Transactions on Information Forensics & Security,2017

3. Research on a fusion gait real-time recognition algorithm;Zhi-qiang;Journal of Physics: Conference Series,2019

4. TensorFlow: Biology’s Gateway to Deep Learning?;Rampasek;Cell Systems,2016

5. TensorFlow: learning functions at scale;Abadi;Acm Sigplan Notices,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3