Particle Swarm Optimization Algorithm in Improved Electrical Control System

Author:

Tian Xiaotao

Abstract

Abstract In today’s social background where high-tech emerges endlessly, various production fields in our country have fully entered the era of mechanical automation and electrical automation, and electrical control systems have been widely used in our country’s electrical appliance manufacturing industry. This paper is based on the theoretical analysis of the particle swarm optimization algorithm. Based on this optimization algorithm, a brand-new particle swarm optimization algorithm is obtained. It is applied to the electrical control system to improve it and makes full use of the improved particle swarm optimization algorithm. The existing electrical control system is optimized. This article firstly analyzes the types of common electrical control systems, puts forward some basic methods to improve the control system, and then explains the effective techniques for improvement, hoping to make reference to the improvement of electrical control systems later in this article. This article first improves the particle swarm optimization algorithm, adding the ability to adjust the control system and dynamic learning factors, focusing on strengthening the later stage of the optimization of the particle swarm algorithm and the ability to converge to improve the efficiency of the calculation. The second is to improve the traditional particle swarm optimization algorithm and update the calculation method of the formula to reduce the possibility of selecting undesirable particles and affecting the optimization results. Finally, through MATLAB and reverse simulation analysis, compared with the traditional electrical control system algorithm, the improved particle swarm optimization algorithm has a faster convergence speed and high control system efficiency. The experimental research results show that the particle swarm optimization algorithm proposed in this paper has a huge advantage compared with other algorithms, and its parameter optimization gives full play to the powerful performance of the electrical control system.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3