Artificial intelligence approach to analyze SIMS profiles of 11B, 31P and 75As in n- and p-type silicon substrates: experimental investigation

Author:

Filali Walid1ORCID,Boubaaya Mohamed1,Garoudja Elyes1,Lekoui Fouaz2ORCID,Abdellaoui Ibrahime2,Amrani Rachid3,Oussalah Slimane4,Sengouga Nouredine5ORCID

Affiliation:

1. Plateforme Technologique de Microfabrication , Centre de Développement des Technologies Avancées , cité 20 août 1956, Baba Hassen, 16081 Algiers , Algeria

2. Division Milieux Ionisés et Laser , Centre de Développement des Technologies Avancées , cité 20 août 1956, Baba Hassen, 16081 Algiers , Algeria

3. Département des Sciences de la Matière , Université Alger1 Ben Youcef Benkhedda , Algiers , Algeria

4. Division Microélectronique et Nanotechnologies , Centre de Développement des Technologies Avancées , cité 20 août 1956, Baba Hassen, 16081 Algiers , Algeria

5. Laboratory of Metallic and Semiconducting Materials (LMSM) , Université Mohamed Khider Biskra , BP 145 RP, 07000 Biskra , Algeria

Abstract

Abstract In this work, we report an effective approach based on an artificial intelligence technique to investigate the secondary ions mass spectroscopy (SIMS) profiles of boron, phosphorus and arsenic ions. Those dopant ions were implanted into n- and p-type (100) Silicon substrate using the ion implantation technique with energy of 100 and 180 keV. Annealing treatment was conducted at various temperatures ranging from 900 to 1030 °C for 30 min. The doping profile parameters such as the activation energy, diffusion coefficient, junction depth, implant dose, projected range and standard deviation were determined using particle swarm optimization (PSO) algorithm. The efficiency of this strategy was experimentally verified by the fitting between both real measured SIMS profile and predicted ones. In addition, a set of simulated doping profiles was generated for different annealing time to prove the ability of this approach to accurately estimate the above parameters even when changing the experimental conditions.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3