Environmental impacts of utilization of ageing fixed offshore platform for ocean thermal energy conversion

Author:

Zulkifli M A R,Husain M K Abu,Zaki N I Mohd,Jaafar A B,Mukhlas N A,Ahmad S Z A Syed,Soom E Mat,Azman N. U.

Abstract

Abstract Most Malaysian jacket platforms have outlived their design life. As these old platforms have outlived their design life, other alternatives must be considered. As several offshore oil and gas extraction installations approach the end of their operational life, many options such as decommissioning and the development of a new source of energy such as wind farms are introduced. The objective of this paper is to investigate the environmental impacts of utilising ageing fixed offshore platform as a source for Ocean Thermal Energy Conversion (OTEC). The environmental impact of utilising an ageing fixed offshore platform as an OTEC source is discussed. OTEC produces energy by taking advantage of temperature variations between the ocean surface water and the colder deep water through cold-water intake piping, which requires a seawater depth of 700 metres. The output of this study shows that OTEC is envisioned to preserve marine life, becoming a new and reliable source of energy, assist clean water production, and reduce the negative impact of climate change. OTEC platforms utilising ageing platforms may lead to 44 % of fish catch in the ocean, remove 13 GW of surface ocean heat for every GW of electricity production per year, generate 1.3105 tonnes of hydrogen per year for each GW of electricity generated. In addition, OTEC platforms can reduce approximately 5106 tonnes of carbon dioxide from the environment for 1 GW of electricity generated per year, and supply 2 million litres of water per day for a 1 MW platform. Since Malaysia’s seawater profile allows for installing a fixed offshore platform as an OTEC power plant, Malaysia has many potentials to profit from the OTEC process.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference30 articles.

1. Lifetime extension of ageing offshore structures by global ultimate strength assessment (GUSA);Soom;Malaysian Journal of Civil Engineering,2018

2. Requalification of offshore jacket structures in Malaysian waters;Ayob;Offshore Technology Conference-Asia,2014

3. Life cycle structural integrity management of offshore structures;Moan;Structure and Infrastructure Engineering,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3