Abstract
Abstract. The climate emergency has prompted rapid and intensive research into sustainable, reliable, and affordable energy alternatives. Offshore wind has developed and exceeded all expectations over the last 2 decades and is now a central pillar of the UK and other international strategies to decarbonise energy systems. As the dependence on variable renewable energy resources increases, so does the importance of the necessity to develop energy storage and nonelectric energy vectors to ensure a resilient whole-energy system, also enabling difficult-to-decarbonise applications, e.g. heavy industry, heat, and certain areas of transport. Offshore wind and marine renewables have enormous potential that can never be completely utilised by the electricity system, and so green hydrogen has become a topic of increasing interest. Although numerous offshore and marine technologies are possible, the most appropriate combinations of power generation, materials and supporting structures, electrolysers, and support infrastructure and equipment depend on a wide range of factors, including the potential to maximise the use of local resources. This paper presents a critical review of contemporary offshore engineering tools and methodologies developed over many years for upstream oil and gas (O&G), maritime, and more recently offshore wind and renewable energy applications and examines how these along with recent developments in modelling and digitalisation might provide a platform to optimise green hydrogen offshore infrastructure. The key drivers and characteristics of future offshore green hydrogen systems are considered, and a SWOT (strength, weakness, opportunity, and threat) analysis is provided to aid the discussion of the challenges and opportunities for the offshore green hydrogen production sector.
Funder
Engineering and Physical Sciences Research Council
Reference145 articles.
1. 12toZero: HyFloat patented design combines buoyancy & storage in one foundation for the most reliable & cost-effective floating hydrogen supply: https://www.12tozero.com/why-hyfloat/, last access: 20 Dezember 2023.
2. ABS: Guide for Fatigue Assessment Of Offshore Structures, American Bureau of Shipping, https://ww2.eagle.org/en/rules-and-resources/rules-and-guides.html?q=offshore (last access: 20 September 2022), 2020.
3. Adedipe, O., Brennan, F., Mehmanparast, A., Kolios, A., and Tavares, I.: Corrosion fatigue crack growth mechanisms in offshore monopile steel weldments, Fatigue Fract. Eng. M., 40, 1868–1881, https://doi.org/10.1111/ffe.12606, 2017.
4. Alexander, W.: A Low Specific Mass, Free Floating Wind Energy Concept up to 40 MW, Proceedings of the ASME 2019 2nd International Offshore Wind Technical Conference, ASME 2019 2nd International Offshore Wind Technical Conference, St. Julian’s, Malta, 3–6 November 2019, V001T01A015, ASME, https://doi.org/10.1115/IOWTC2019-7590, 2019.
5. Amirafshari, P., Brennan, F., and Kolios, A.: A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure, Wind Energ. Sci., 6, 677–699, https://doi.org/10.5194/wes-6-677-2021, 2021.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献