Lung Nodule Classification in CT Images Using 3D DenseNet

Author:

Zhang Ge,Lin Lan,Wang Jingxuan

Abstract

Abstract Lung cancer is the main malignant tumour affecting the health of residents in China. Automatically discriminating benign and malignant pulmonary nodules can facilitate the early detection of lung cancer, which reduces lung cancer mortality. The rising quantity of public available lung CT datasets made it possible to use deep learning approaches for lung nodules malignancy classification. Unlike most of the previous models that focused on 2D convolutional neural nets (CNN), here we explore the use of the DenseNet architecture with 3D filters and pooling kernels. The performance of the proposed nodule classification was evaluated on publicly available LUNA16 dataset, a subset of lung image database consortium and image database resource initiative dataset (LIDC/IDRI). It achieved a 92.4% classification accuracy. The proposed method provides an independent module with encouraging prediction accuracy that can be easily incorporated with a lung cancer computer-aided diagnosis system.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. A. Jemal. Cancer statistics;Siegel;CA: a cancer journal for clinicians,2019

2. Lung Micronodules: Automated Method for Detection at Thin-section CT-Initial Experience;Brown;Radiology,2003

3. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network;Suzuki;IEEE Transactions on Medical Imaging,2005

4. Lung Nodule Classification Using Supervised Manifold Learning Based on All-Class;Li,2012

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3