Author:
Moon Kapila,Jethawat Ashok
Publisher
Springer Nature Switzerland
Reference11 articles.
1. Wang, L.: Deep learning techniques to diagnose lung cancer. Cancers 14(22), 5569 (2022)
2. Tsivgoulis, M., Papastergiou, T., Megalooikonomou, V.: An improved SqueezeNet model for the diagnosis of lung cancer in CT scans. Mach. Learn. Appl. 10, 100399 (2022)
3. Sheriff, S.T.M., Kumar, J.V., Vigneshwaran, S., Jones, A., Anand, J.: Lung cancer detection using VGG NET 16 architecture. In: International Conference on Physics and Energy (ICPAE 2021) (2021)
4. Baranwal, N., Doravari, P., Kachhoria, R.: Classification of histopathology images of lung cancer using convolutional neural network (CNN).
arXiv:2112.13553 [eess.IV]. Desseroit, M.C., et al.: Development of a nomogram combining clinical staging with 18 F-FDG PET/CT image features in non-small-cell lung cancer stage I–III. Eur. J. Nucl. Med. Mol. Imaging 43(8), 1477–1485 (2016)
5. van Gómez López, O., et al.: Heterogeneity in [18F] Fluorodeoxyglucose positron emission tomography/computed tomography of non-small cell lung carcinoma and its relationship to metabolic parameters and pathologic staging. Mol. Imaging 13(9), 7290 (2014)