Comparative thermal analysis of extruded ceramic products between multi perforated brick and modified bricks in cells distribution

Author:

Colmenares A P,Sánchez J,Díaz C X

Abstract

Abstract The demand for cooling and heating systems to adapt spaces is a critical environmental problem due to the high energy consumption required for its operation. For this reason, the offer of products for architectural facades should consider constructive solutions that mitigate the heating of buildings. Thermal behavior of building materials is an elementary factor in the energy consumption of buildings. This paper presents the comparative thermal analysis of 4 ceramic product designs for masonry, of which, one represents the traditional multi perforated brick and the others, are proposed to prove whether shape affects the heat transfer processes. The research methodology is divided into 2 stages: product design and thermal validation by transfer and heat fluxes in the ANSYS R16 software using the finite element method. For the design process, modification of the internal cells and elimination of the thermal bridge was implemented. Simulations were configured under the highest values of solar radiation recorded in the city of San José de Cúcuta, Colombia to know the products performance in the most extreme conditions of the city. The results indicate that design varies energy performance of the product, since it reduces the temperature of the inner surface to 1.23 °C or increase it to 2.25 °C. The results show that the modification of cells distribution and elimination of thermal bridges are passive strategies for the reduction of heat transfer in the design of ceramic product for masonry. This research is a breakthrough for future research that develops constructive units focused on improving the quality of life of people from thermal comfort, energy efficiency and the use of local resources and technologies.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Dynamic facades, the smart way of meeting the energy requirements;Johnsen;Energy Procedia,2015

2. Study on the thermal properties of hollow shale blocks al self-insulating wall materials;Bai;Hindawi,2017

3. Uso eficiente de la energia en edificios habitacionales. Mejoramiento termico de muros de albañileria de ladrillos ceramicos. El caso de Chile;Bustamante;Revista de la Construccion,2005

4. Parametric study on the impact of thermal bridges on the heat loss of internally insulated buildings;Marincionia;Energy Procedia,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3