Expanding Receptive Field YOLO for Small Object Detection

Author:

Du Zexing,Yin Jinyong,Yang Jian

Abstract

Abstract State-of-art object detection networks like YOLO, SSD and Faster R-CNN all have achieved great success in object detection. However, these algorithms have a low performance in small object detection. So, we produce the Expanding receptive field YOLO (ERF-YOLO) to deal with this problem. At first, we propose an efficient block which is called expanding receptive field block (ERF-block) to capture more information in larger areas. Base on YOLOv2, we down-sample the low-level location information by ERF-block, and up-sample feature information by deconvolution. Then we further assemble these two parts together to make the prediction. After training the network on VOC dataset, we have a good result with 82.6% mAP (mean Average Precision) which is 4.0% higher than the original YOLOv2 network. Thanks to the efficient block, it takes 62fps to detect one image when the input size is 416×416, which could keep a real-time speed. In addition, we also evaluate the model on a remote sensing dataset which contains many small targets, and it also shows that ours model has a better performance.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks;Ren;IEEE Transactions on Pattern Analysis and Machine Intelligence,2017

2. You Only Look Once: Unified, Real-Time Object Detection;Redmon,2016

3. YOLO9000: Better, Faster, Stronger;Redmon,2017

4. SSD: Single Shot MultiBox Detector;Liu,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3