Study of Forecasting Method for Agricultural Products Using Hybrid ANN-GARCH Approach

Author:

Jannah Miftahul,Sadik Kusman,Afendi Farit Mochamad

Abstract

Abstract The capital city of Jakarta as the center of socio-economic activities has to maintain the stability of its economy, including the stability of staple food prices such as rice, onion, and chili prices. To make a strategic plan for anticipatory action, one of the ways is by doing forecasting. The problem in forecasting staple food prices is the fact that those staple foods have high volatility prices. It makes the conditional variance of residual become inconstant. This research applied the Hybrid ANN-GARCH model that combined Artificial Neural Network (ANN) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. This method has used to predict rice, onion, red chili, and cayenne pepper prices in Jakarta. The data divided into two categories, training and testing data. The result shows that the Hybrid ANN-GARCH model produced smaller RMSE and MAPE values than ARIMA model. Based on the accuracy value of the model, it can be concluded that Hybrid ANN-GARCH better than ARIMA in forecasting the price of the four commodities.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Kajian Perubahan dan Volatilitas Harga Komoditas Pangan Strategis serta Pengaruhnya Terhadap Inflasi di Kota Banda Aceh;Pradana;JIEP,2019

2. Outlook Komoditas Pertanian Subsektor Tanaman Pangan Padi Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian,2016

3. Volatilitas Harga Bawang Merah di Indonesia;Sahara;Buletin Ilmiah Litbang Perdagangan,2019

4. Dinamika Produksi dan Volatilitas Harga Cabai: Antisipasi Strategi dan Kebijakan Pengembangan Pengembangan Inovasi Pertanian;Anwarudin,2015

5. Forcasting Stock Market Volatility: A Forecast Combination Approach MPRA Paper;Nazarian,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3