Using deep learning to detect the presence/absence of defects on leather: on the way to build an industry-driven approach

Author:

Adão Telmo,Gonzalez Dibet,Castilla Yusbel Chavez,Pérez José,Shahrabadi Somayeh,Sousa Nuno,Guevara Miguel,Magalhães Luis G.

Abstract

Abstract In textile/leather manufacturing environments, as in many other industrial contexts, quality inspection is an essential activity that is commonly performed by human operators. Error, fatigue, ergonomic issues, and related costs associated to this fashion of carrying out fabric validation are aspects concerning companies’ strategists, whose mission includes to watch over the physical integrity of their employees, while aiming at enhanced quality control methods implementation towards profit maximization. Considering these challenges from a technical/scientific perspective, machine/deep learning approaches have been showing great skills in adapting a wide range of contexts and, in particular, industrial environments, complementing traditional computer vision methods with characteristics such as increased accuracy while dealing with image classification and segmentation problems, capacity for continuous learning from experts input and feedback, flexibility to easily scale training for new contextualization classes – unknown types of occurrences relevant to characterize a given problem –, among other advantages. The goal of crossing deep learning strategies with fabric inspection processes is pursued in this paper. After providing a brief but representative characterization of the targeted industrial context, in which, typically, fabric rolls of raw-material mats must be processed at a relatively low latency, an Automatic Optical Inspection (AOI) system architecture designed for such environments is revisited [1], for contextualization purposes. Afterwards, a set of deep learning-oriented training methods/processes is proposed in combination with neural networks built based on Xception architecture, towards the implementation of one of the components that integrate the aforementioned system, from which is expected the identification of presence/absence of defective textile/leather raw material at a low-latency. Several models powered by Xception were trained with different tunning parameters, resorting to datasets variations that were set up from raw images of leather, following different annotation strategies (meticulous and rough). The model that performed better reached 96% of accuracy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference24 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3