Lightweight network study of leather defect segmentation with Kronecker product multipath decoding

Author:

Zhang Zhongliang12,Fu Yao1,Huang Huiling2,Rao Feng1,Han Jun2

Affiliation:

1. School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China

2. Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian 362201, China

Abstract

<abstract><p>In the leather production process, defects on the leather surface are a key factor in the quality of the finished leather. Leather defect detection is an important step in the leather production process, especially for wet blue leather. To improve the efficiency and accuracy of detection, we propose a leather segmentation network using the Kronecker product for multi-path decoding and named KMDNet. The network uses Kronecker products to construct a new semantic information extraction layer named KPCL layer. The KPCL layer is added to the decoding network to form new decoding paths, and these different decoding paths are combined that segment the defective part of the leather image. We collaborate with leather companies to collect relevant leather defect images; use Tensorflow for training, validation, and testing experiments; and compare the detection results with non-machine learning algorithms and semantic segmentation algorithms. The experimental results show that KMDNet has a $ 1.99\% $ improvement in $ F1 $ score compared to UNet for leather and a nearly three times improvement in detection speed.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3