Research on Lightweight Design of Automobile Collision Safety Structure Based on Multiple Materials

Author:

Wang Tingting,Dong Ruoyan,Zhang Shan,Qin Dongchen

Abstract

Abstract With the increase in car ownership and the increasing pressure of energy conservation and emission reduction, the lightweighting of cars has become an important development direction for traditional cars to reduce emissions and increase the endurance of electric vehicles. Aiming at the lightweight design of automobile crash safety structure, this paper proposes a variable section and multiple materials vehicle lightweight design framework based on collision safety. Taking a certain type of racing car frame as the research object, the lightweight design is carried out, and the optimal design scheme of racing car frame with good collision safety performance is obtained. Taking the lightest frame mass as the design goal, the optimal latin square design and response surface model are used to optimize the thickness of each pipe frame, and the lightweight frame optimization scheme based on the improvement of collision safety performance is obtained. Finally, under the premise that the peak acceleration of the cockpit is reduced by 20.02% and the amount of intrusion at the brake pedal is reduced by 25.31%, weight reduction of 14.38% is achieved. Based on the actual engineering situation, this paper constructs a lightweight design framework for automobiles based on collision safety, and provides an efficient optimization process for lightweight design of automobiles.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Lightweight optimal design of a rear bumper system based on surrogate models [R];Li,2015

2. Research on multi-objective optimization of light-weight full life cycle of pure electric vehicles and traditional vehicles [J];Jianquan;Automotive Engineering,2019

3. Lightweight optimization design of automotive aluminum alloy front bumper anti-collision beam[C];Wang;ICMRA 2015, ACSR-Advances in Comptuer Science Research,2015

4. Lightweight Body-In-White Design Driven by Optimization Technology[J];Heguo,2018

5. Parametric body-in-white structure lightweight multi-objective optimization [J];Chuanqing;Computer Aided Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3