Crashworthiness analysis and multi‐objective optimization of Al/CFRP hybrid tube with initial damage under transverse impact

Author:

Cai Weiwen123,Ma Qihua123ORCID,Wang Yazhe123,Gan Xuehui23

Affiliation:

1. School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai China

2. Center for Civil Aviation Composites Donghua University Shanghai China

3. Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province‐Ministry Joint) Shanghai China

Abstract

AbstractDamage can cause uncontrollable changes during the service of a structure, leading to a reduction in mechanical properties and ultimately to structural failure. This paper presents an experimental and numerical study of the crashworthiness of thin‐walled Al/CFRP hybrid tubes with pre‐existing transverse compression damage under transverse impact loading. Experiments shows that initial damage has a more limited effect on the energy absorption capacity of hybrid tubes under impact loading, but has a greater effect on their deformation pattern and the evolution of damage. After impact, cracks on the surface of the damaged tube propagate into multiple, discontinuous cracks with a total length similar to the length of the tube. Conversely, only short cracks are generated on the intact tube. Subsequent finite element simulations demonstrate the validity and accuracy of a coupled multi‐loads model and explore the effect of different structural parameters (winding angle and number of CFRP layers, and thickness of Al tube) on the crashworthiness of the hybrid tubes. Finally, a multi‐objective snake optimizer algorithm (MOSO) was used to obtain an optimal hybrid tube structure for multiple loading conditions in order to minimize the effect of initial damage on the crashworthiness of the hybrid tube. In comparison to the simulation outcomes for the original structure, the peak crushing force (PCF) decreased by 28.46%, whereas the specific energy absorption (SEA) increased by 44.59%.Highlight The effect of pre‐existing damage on the crashworthiness and deformation pattern of hybrid tube structures is investigated by means of experimental and numerical simulations. A multi‐step finite element model was developed using the restart method to realize the crashworthiness analysis of the hybrid tube under multiple load coupling conditions. The prediction accuracy of four surrogate models for the crashworthiness of hybrid tubes is compared and analyzed. The multi‐objective snake optimizer algorithm (MOSO) is proposed to obtain the optimum hybrid tube structure for multiple loading conditions.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3