Author:
Guo Zihan,Zhang Jun,Huang Jinman
Abstract
Abstract
The determination of pipe deposition and optimum conveying velocity in pneumatic conveying has an important impact on conveying efficiency. The Euler-Lagrange method DPM model is used to analyse five different particle sizes and densities of small particles, and the flow pattern in the horizontal pipeline at different particle sizes and densities is derived from the graphs of the maximum discrete phase concentration, particle trajectory and discrete phase concentration distribution for each working condition. The simulation results show that the deposition increases with particle size and density, the optimum conveying speed increases with particle size and density, the larger the deposition, the larger the required conveying velocity. The velocity of 2 m/s can make the particles below 20μm suspended transport, the velocity of 4 m/s allows particles with a particle size of 30μm and a density of 1000 kg/m3 or less to be transported in suspension and 6 m/s allows particles with a density of 2000 kg/m3 or less to be transported in suspension. The aim is to provide a reference for the design of pneumatic conveying systems and the selection of the optimum conveying velocity.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献