Powerful ultraviolet laser pulse impact on polished metals and semiconductors

Author:

Khomich Yu V,Malinskiy T V,Mikolutskiy S I,Rogalin V E,Yamshchikov V A,Kaplunov I A,Ivanova A I

Abstract

Abstract Laser treatment for samples of copper, its alloys and gold was carried out with a UV pulse of nanosecond duration. After irradiation at subthreshold values of the energy density (E ∼ 0.2 - 0.8 J/cm2) the noticeable changes in the surface layer were revealed. These are traces of thermoplastic deformation resulting from laser exposure. They appear as uneven rise of the irradiated sample surface area up to 1 μm. The effect is cumulative, because the height of the uplifts increases with increasing number of impact pulses. In addition, the characteristic features of high-temperature plastic deformation were observed in the form of crystallographic slip and grain-boundary slippage. At E ∼ 1 J/cm2 or more the optical breakdown occurred with the formation of a crater on the metal surface, that precludes the detection of described effects. The mechanical impulse of a laser plasma, when exposed to a metal surface, prevents the thermomechanical expansion of the material, and therefore, similar effects have not been previously observed. On the surface of materials with a significantly larger elastic limit (single crystals of germanium and silicon, a tungsten carbide) this phenomenon was not observed, because the generated thermomechanical stresses were insufficient to create conditions of plastic deformation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3