Stroke Classification Model using Logistic Regression

Author:

Annas S,Aswi A,Abdy M,Poerwanto B

Abstract

Abstract This study aims to determine the factors that significantly affect the classification of stroke. The response variable used is the type of stroke, namely non-hemorrhagic stroke and hemorrhagic stroke. The predictors used were cholesterol level, blood sugar level, temperature, length of stay, pulse rate, and gender. By using logistic regression, the results obtained modeling accuracy of 74.8% where the predictors that have a significant effect (alpha <0.05) are total cholesterol and length of stay.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Health related quality of life of stroke survivors: experience of a stroke unit;Abubakar;International journal of biomedical science: IJBS,2012

2. Pengaruh hipertensi terhadap kejadian stroke iskemik dan stroke hemoragik di ruang Neurologi di Rumah Sakit Stroke Nasional (RSSN) Bukittinggi tahun 2011;Usrin;Kebijakan, Promosi Kesehatan dan Biostatiskik,2013

3. Penerapan Regresi Logistik dalam Menganalisis Faktor Penyebab Peningkatan Angka Kematian Bayi;Fa’rifah;Jurnal Ilmiah d’ComPutarE,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exosome- Machine Learning Integration in Biomedicine: Advancing Diagnosis and Biomarker Discovery;Current Medicinal Chemistry;2024-08-20

2. Data-driven analysis of stroke-related factors and diagnostic prediction;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

3. Factors affecting preeclampsia in RSIA Sitti Khadijah 1 Makassar: Logistic Regression analysis;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023

4. Stroke type classification model based on risk factors using resilient backpropagation neural networks;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023

5. Classification model for type of stroke using kernel logistic regression;Communications in Mathematical Biology and Neuroscience;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3