Research on Life Prediction of IGBT Devices Based on Elman Neural Network Model

Author:

Xing Chao,Xi Xinze,He Xin,Li Shengnan,Liu Mingqun,Li Lie

Abstract

Abstract IGBT, as a new generation of composite full-controlled voltage-driven power semiconductor devices, has been widely used in the field of modern power electronics. The study of IGBT device life prediction has important guiding significance for the stable operation and reliability management of power system. In this paper, the Cofin-Manson-Arrhenius extended exponential model based on thermal load is analyzed, and the model parameters are trained and modified by the Elman neural network in order to improve the prediction accuracy of life prediction model. The Coffin-Manson-Arrhenius extension exponential model and the new improved model are simulated and validated by experiments. The results are compared with the actual life of IGBT. It is concluded that the Coffin-Manson-Arrhenius extension exponential model based on Elman neural network has higher accuracy in life prediction than the Coffin-Manson-Arrhenius extension exponential model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. An Overview of IGBT Life Prediction Models[J];Xin;Journal of Power Supply,2014

2. Selected failure mechanisms of modern power modules[J];Ciappa;Microelectronics Reliability,2002

3. Reliability of High-Power IGBT Modules for Traction Applications[C]//IEEE International Reliability Physics Symposium;Ciappa,2007

4. Failure Mechanism and Lifetime Prediction Modeling of IGBT Power Electronic Devices[J];Ming;JOURNAL OF XI’AN JIAOTONG UNIVERSITY,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Combination Model of IGBT Lifetime Prediction Based on GA-Elman-LSTM;2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3