Microstructure Study of Mix Assembly Lead-free Sn-Ag-Cu Ball Grid Array and Sn-10Cu Solder Paste

Author:

Said Rita Mohd,Sulwarajan Kalaiarasi A/P,Razak Nurul Razliana Abdul,Somidin Flora,Zaimi Nur Syahirah Muhammad

Abstract

Abstract In recent years, electronic technologies have been striving to minimize the use of lead in their manufacturing and production. As a result, the electronic packaging industry is slowly transitioning from lead solder to lead-free solder. Though environmentally lead-free solders are advantageous, there are still needs some work in meeting current technological demand and requirements. In this study, the microstructure analysis on lead-free Sn-Ag-Cu Ball Grid Array (BGA) and Sn10Cu solder paste was done. The main aim of this study is to investigate the effect of isothermal aging on the microstructure of the solder paste joint and evaluate the intermetallic compound (IMC) thickness on the solder joint reliability. Optical Microscope (OM) and ImageJ software have been utilized to study the bulk solder microstructure. The results show that the bulk microstructure consists of β-Sn and Cu6Sn5 / β-Sn eutectic phases. The IMC layer has undergone rapid growth with increasing aging temperature and time. The two main IMC layers (Cu3Sn and Cu6Sn5) grew thicker due to high temperature. The growth kinetic of Sn10Cu resulted in 16.70 kJ/mol activation level. Therefore, the significance of the findings from this study might provide a potential answer for future development for highly reliable solder joint applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3