Author:
Hsiao J C,Shivam Kumar,Kam T Y
Abstract
Abstract
Worm gearboxes are popular across various industrial applications since they offer significant gear ratios in small installation spaces. Despite having multiple advantages, worm gearboxes are subjected to higher friction due to sliding design and are prone to damage and increased transmission error over the period of operation. Delayed diagnosis of worm gearbox degradation can lead to low-quality products and/or unnecessary production line downtime. Using vibration characteristics of worm gearbox, it is possible to determine the fault and transmission error at a given period in time. In this paper, an ensemble machine learning model is trained and deployed to monitor the transmission error of worm gearbox and classify between new, operational and old conditions. 1D CNN (one dimensional convolutional neural network) model is used to automatically extract features in vibration signal of X, Y, and Z axes and predict the relevant state of worm gear. The proposed technique uses ensemble machine learning technique fusion of features extracted by multi-layer 1D CNN for three axes vibration data. The proposed method could achieve 96% accuracy and performs significantly better than traditional sequential and ensemble machine learning models on a dataset of with 7,870 samples with 800 samples labeled as new condition, 4,740 samples as operational and 2,330 as old.
Subject
General Physics and Astronomy
Reference27 articles.
1. Diagnostics of worm gears with vibration analysis;Elasha,2014
2. Fault diagnosis of automobile gearbox based on machine learning techniques;Praveenkumar;Procedia Eng.,2014
3. Intelligent Fault Diagnosis Model for Rotating Machinery Based on Fusion of Sound Signals;Saimurugan,2016
4. Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks;Ince;IEEE Trans. Ind. Electron.,2016
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献