Application of a one-dimensional fuel-oil dilution model coupled with an empirical droplet-to-film formation strategy for predicting in-cylinder oil effects in a direct injection engine

Author:

Renzis E D,Mariani V,Bianchi G M,Falfari S,Cazzoli G

Abstract

Abstract Nowadays climate change due to the unnatural increment of green-house effect is one of the most critical environmental issues. In this context, internal combustion engines are still a short - term valuable solution. This is made possible by the study and the development of synthetic or alternative fuels, such e - gasolines and hydrogen. In this context, direct injection is still the most adopted strategy to improve internal combustion engine efficiency. The installation of the injector on the cylinder head may lead to the impact of the fuel on the wall of the cylinder liner. This phenomenon causes lubricant oil dilution, possibly increasing particulate matter emission at low load and abnormal combustions, known as low - speed pre-ignitions, at high load. The present paper aims to evaluate the influence of a set of established key parameters anticipating the effects of lubricant oil - fuel diffusion through a one - dimensional model implemented in Python. The model accounts for the runtime deposition of the fuel film by means of the results of a three - dimensional Computational Fluid Dynamics spray simulation. The model accounts also for the heat and mass transfer between species and the liquid fuel phase change for a representative setup of nowadays injectors. The dilution of a multigrade lubricant oil caused by synthetic fuels under an engine cold start operative condition is evaluated in this work.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3