Dilute nitrides heterostructures grown by liquid phase epitaxy for solar cells applications

Author:

Donchev V,Milanova M

Abstract

Abstract In this paper, we present a study on liquid phase epitaxy (LPE) grown dilute nitride GaAsSbN layers and p-i-n heterostructures for use in multijunction solar cells. The composition of the layers and chemical bonding of Sb and N in the compounds were determined by energy- dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The electrical properties of the grown samples were characterized by Hall effect measurements. Nominally undoped layers are n-type with Hall carrier concentration of 5 × 1016cm-3. Mg was successfully used as acceptor dopant for obtaining closely compensated layers with electron concentration of 1015 cm-3 as well as p-type layers with high free hole concentrations in the range (5-7) × 1018cm-3. Temperature-dependent photoluminescence spectra at low and high excitation were measured to evaluate the optical quality and identify localized states in the grown layers. Non-contact surface photovoltage method provided information about the absorption characteristics of the GaAsSbN layers. A series of GaAs/GaAsSbN/GaAs heterostructures based on closely compensated i-GaAsSbN have been also grown by LPE. The red limit of the structures determined from surface photovoltage measurements was extended down to 1.2 eV. Single junction p-i-n solar cells with area 0.16 cm2 were performed based on the grown structures. A power conversion efficiency of 4.1 % was measured for the fabricated cells under AM1.5 air global conditions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference27 articles.

1. 13.2% efficiency double-hetero structure single-junction InGaAsN solar cells grown by MOVPE;Kim;J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.,2015

2. 43.5% efficient lattice matched solar cells;Wiemer,2011

3. Double-band anticrossing in GaAsSbN induced by nitrogen and antimony incorporation;Lin;Appl. Phys. Express,2013

4. 1.25-eV GaAsSbN/Ge double-junction solar cell grown by metalorganic vapour phase epitaxy for high-efficiency multijunction solar cell application;Kim;IEEE J. Photovoltaics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3