Comparative Study of p-type CuBi2O4 Films and CuBi2O4 Nanopillars Photocathode for High Performance Photoelectrochemical Water Splitting

Author:

Nasori Nasori,Rubiyanto Agus,Endarko Endarko

Abstract

Abstract Traditional thin films and nanostructure are the most reasonable candidates to build the next generation of photoelectrochemical water splitting system with outstanding optical and electrical properties. Especially the use of nanostructure arrays as photoelectrodes might complement the traditional semiconductor photoelectrodes in providing close transfer distance of photoinduced carriers and the increase in the surface reaction sites than thin films. Both of the reasons reduce the probability of carriers recombination and thus enhancing the photoelectrochemical performances. In this work, we demonstrated highly efficient water splitting performance of CuBi2O4 nanopillars compared to thin film CuBi2O4 photocathode. The CuBi2O4 nanopillars were fabricated by electrodeposition on anodized aluminum oxide (AAO) template. The CuBi2O4 nanopillars photocathode gave a notable improvement in photocurrent, from −0.50 to −1.50 mA cm−2 at −0.45 V vs. Ag/AgCl by the external quantum yield more than 3 times at wavelength 420 nm. Finally, the result of the study appealed that the photoelectrode based on CuBi2O4 nanostructure arrays is an encouraging system for showing efficient water splitting system under visible light.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3